

Monique Romeyn

GEO 5329

Dr. Hagelman

May 1, 2025

The Battle of the Amazon Rainforest: Searching for a Cure

INTRODUCTION

The Amazon Rainforest is critical in regulating global climate change, preserving biodiversity, and sustaining indigenous and local communities. The Amazon is often referred to as the "lungs of the Earth," and the effects of deforestation have been driven by illegal logging, agriculture for cattle ranching, illegal mining, and infrastructure development. The deforestation area most affected is between the cities of Manaus and Belem along the Amazon River. The deforestation of this area is biodiversity loss, ecosystem disruption, soil erosion, greenhouse gas emissions causing climate change, and Indigenous community encroachment. The deforestation has critical levels, the loss of vital forest areas not only threatens biodiversity and the ecosystem but reduces carbon sequestration that accelerates climate change by releasing significant amounts of carbon (CO₂) into the atmosphere. Deforestation contributes to the disruption of weather patterns, water cycles, and endangering countless species including local communities. We need to sustainable solutions to the urgency of the effects of deforestation. Researchers, government, and environmental organizations need to continue to explore and work on more effective mitigation and sustainable strategies for example, enforce laws, use innovative technologies, and practice regenerative agriculture techniques to rebuild and regrow and find long-term solutions. Traditional conservation and mitigation efforts have been a challenge in the past with the current rate of deforestation. Today innovative technologies and methods such as remote sensing using earth observation satellites, geographic information systems (GIS), artificial intelligence (AI), Machine Learning (ML), and unmanned aerial vehicles (UAV) have changed how we manage and monitor deforestation. Today, these tools currently assist in monitoring, preventing, and reversing environmental damage and support researchers and governments to address deforestation and climate change.

The purpose of this research paper is to explore the current state of deforestation in the Amazon, analyze the causes, and evaluate old and new technologies and methods that are or have been successful in mitigating the impacts of deforestation. By integrating technological innovation, this research aims to identify effective, scalable solutions for minimizing and regenerating the Amazon rainforest one of the planet's most vital natural resources. This research will discuss the newest innovative methods of reducing deforestation using regenerative agriculture, a sustainable farming method. Regenerative agriculture farming involves the conservation and rehabilitation of the topsoil using holistic and sustainable farming methods to produce fertile soils that retain water and nutrients without using chemicals and fertilizers. This method will improve food production, enhance biodiversity, produce drought-resistant soils, and support climate change mitigation.

Laws and policies will need to be granted to aim at mitigating these technologies and methods for positive solutions through governments and environmental organizations that will require permits,

financial resources, and community support. As of April 2025, several strategies are being actively implemented to reduce deforestation in the Amazon rainforest. We need to involve government and law enforcement policies, technological advancements, and international collaboration. Brazil has a “Brazil's Zero Illegal Deforestation Goal” (Climate Policy Initiative. (2025, May 4), an action plan for the prevention and control of deforestation in the Amazon and aims to eliminate illegal deforestation by 2030. This plan includes enhanced law enforcement, recognition and protection of Indigenous territories, and to promote sustainable economic activities. The Amazon Region Protected Areas Program (ARPA) is a plan to expand protected areas in the Brazilian Amazon, “Between 2008 and 2020, the protected areas supported by ARPA reduced deforestation by approximately 650,000 acres” (World Wildlife Fund WWF, 2025). ARPA focuses on establishing new conservation units, upgrading existing parks, and supporting sustainable use and practices managed by local communities.

PURPOSE OF STATEMENT

The purpose of this research is to analyze and investigate the primary drivers of deforestation in the Amazon rainforest by collecting data on the factors of deforestation that involve the environment, community, biodiversity, and evaluate the social and economic impact of local communities. This research will include analyzing current mitigation strategies to propose more effective, technological and sustainable solutions for preserving the ecosystem. The research will include the latest innovation of technologies and methods such as remote sensing, geographic information systems (GIS), artificial intelligence (AI), Machine Learning (ML), and unmanned aerial vehicles (UAVs). Research how these technologies can support mitigation to resolve or find solutions on how we manage and monitor deforestation activities. These methods can potentially be a successful in reducing deforestation due to cattle ranching, illegal logging, and mining encroachments and mitigate current policies and environmental laws that are in place and the negative and positive results of these methods and advanced technologies.

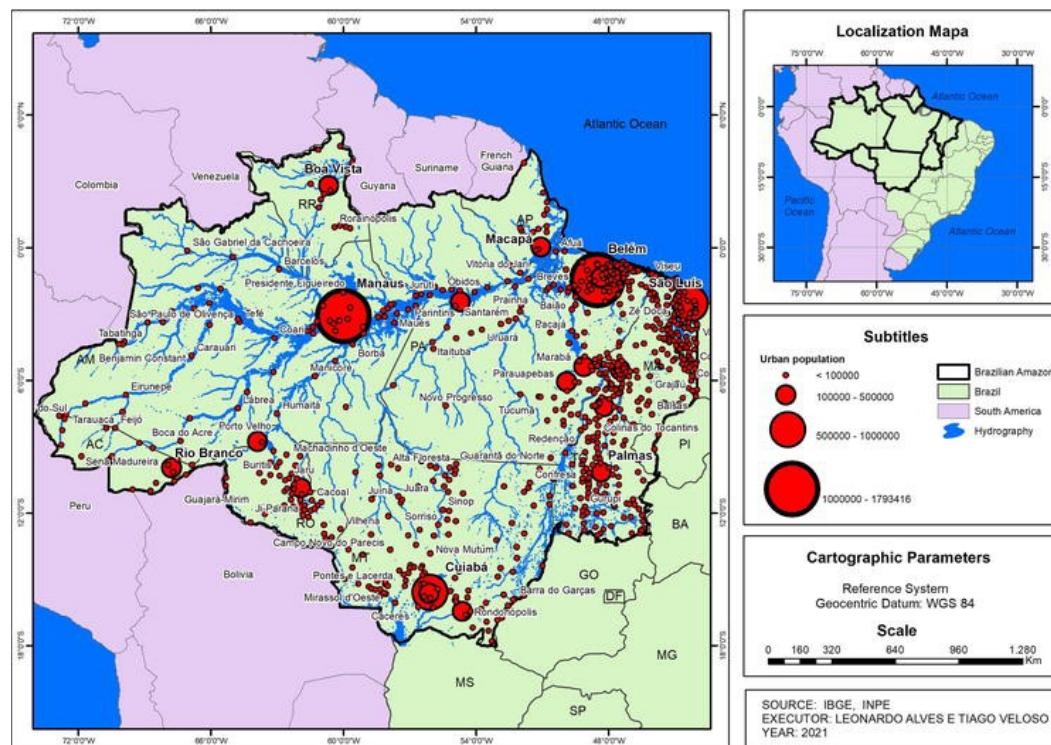
RESEARCH QUESTIONS

How has technology such as remote sensing, GIS, and AI improved deforestation detection and enforcement of protective measures? These technologies have shifted deforestation monitoring from a slow, manual process to a dynamic, near-real-time system, improving the ability to enforce environmental laws, support indigenous land claims, and track the effectiveness of conservation policies. What are the challenges that exist in deforestation mitigation plans currently? Political instability and weak governance, land ownership issues, economic pressures, demand for global products and commodities, and social and cultural difficulties. How does innovative technologies and sustainable regenerative agriculture contribute to reversing deforestation trends? Integrating advanced technology and regenerative agriculture can play a critical role in reversing deforestation trends by offering that balance environmental protection with local economic development. Based on current research, what combination of mitigation strategies offers the most promise for reversing deforestation in the Amazon? Research shows that integrated strategies that combine strong environmental law enforcement, indigenous leadership, sustainable development, technological tools, and global cooperation are much more effective than any most approaches.

LITERATURE REVIEW

Literature on methods, mitigation, and sustainability of the Amazon Rainforest through technology, and innovation efforts using remote sensing, AI, ML, Geographical Information Systems (GIS), and sustainable practices. The majority of literature pertains to the related issues concerning biodiversity, climate change, community health, governance, and water resources, reflecting the multifaceted nature of the Amazon's environmental health. Some advanced technologies and mitigation methods and techniques aim to mitigate greenhouse gas emissions, others others can contribute to deforestation, greenhouse gas, and changing weather patterns, causing further problems. Finding the balance between advance technologies and environmental preservation can be a challenge.

The effectiveness and application of the current technologies are highly dependent on local governments, environmentalists, and conservationists in the specified region to find strategies to slow down or reverse deforestation. Advancements in remote sensing using satellite imagery from earth observation satellites, GIS, AI, ML, and UAV, have significantly enhanced the capacity to monitor, manage, and detect deforestation and illegal activities in the Amazon. New technologies using AI monitoring systems can identify sounds associated with illegal deforestation, such as engines and motorized equipment that can analyze the rate of deforestation. The ML approach using neural networks can analyze LiDAR and satellite imagery to detect the areas mostly affected by deforestation. ML can monitor and collect data in areas to locate permanent and temporary forest that are predictors of deforestation, and aid in analyzing and mitigating deforestation. The integration of GIS with satellite imagery, LiDAR, and AI has notably enhanced the monitoring and understanding of deforestation in the Amazon. These tools not only support in the detection of deforestation, but also provide data to manage the causes and effects of deforestation patterns, drivers, and give us potential mitigation strategies to find areas in need of intervention. The role of advanced imaging technology and GIS data can offer sustainable forest management and conservation efforts in the Amazon that is crucial for sustainable forest management. These innovative technologies are at the forefront of finding sustainable solutions for the Amazon's preservation and reforestation.


A new innovative intervention using a bioeconomy approach emphasizes sustainable production of commodities like cotton, coffee, and cocoa through agroforestry and regenerative agriculture methods. This strategy aims to shorten supply chains, increase value retention for producers, and promote environmental conservation. Community-Based Conservation (CBC) empowers and educates Indigenous people and local communities to manage natural resources sustainably while improving their livelihoods, CBC builds conservation around the knowledge, needs, and leadership of the people who live in the forest. Indigenous and local communities have a deep ecological knowledge of the Amazon that has been practiced for centuries and are familiar how seasonal and weather patterns change, live the environment, provide them food and medicine, and live sustainably. With new technological advancements and sustainable strategies, this can expedite combating deforestation in the Amazon. While significant progress has been made in monitoring and managing deforestation using new technologies it is important that governments and communities engage, but to put policies in place remains a to be the biggest challenge. Integration is crucial for developing coherent public policies and sustainable development strategies tailored to Amazon's deforestation challenges to preserve the land.

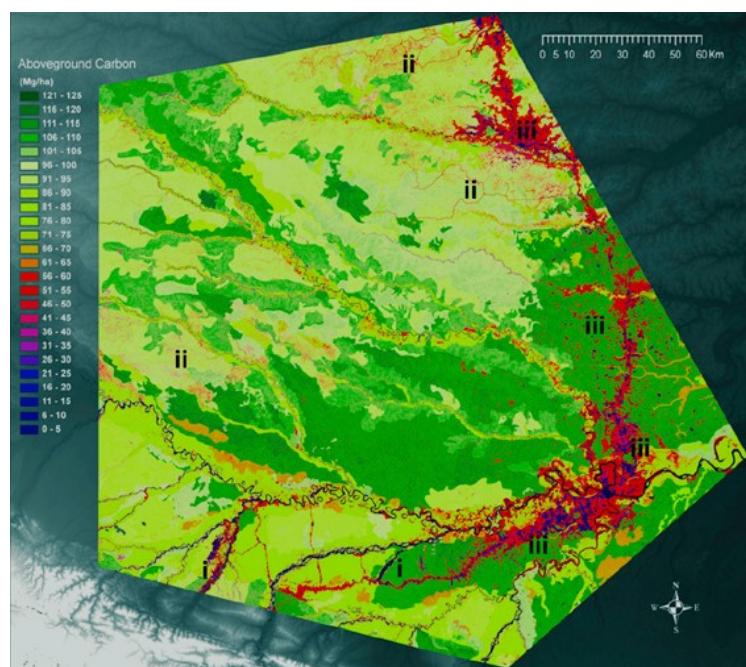
With the cooperation of strong local law enforcement, indigenous and local community involvement, sustainable practices and technological tools, global intervention from other countries can prove to be more effective than any single approach alone.

SITE/SITUATION

The region mostly impacted by deforestation is between Manaus and Belém, often called the “Arc of Deforestation” and is one of the most heavily impacted areas in the Amazon due to infrastructure expansion. This area has accelerated in deforestation over the past decades due to logging, agriculture, and infrastructure development. The construction of several highways opened up remote areas of the forest and the cities are growing as a major hub for trade and transportation and have been identified as two variables for building an economy (Figure 1). The first variable, “is the existence and expansion of metropolization is functional to the new forms of appropriation and capitalist accumulation on a global level, in which the production of value in the urban space leads to the consolidation of new forms of accumulation” (Veloso dos Santos, T. 2022). And the second, “internal structuring axis of the metropolises. The fragmentation of space in these agglomerations demonstrates this unequal reality produced as one of their elements in common, despite their different patterns” (Veloso dos Santos, T. 2022). Scientists recognized this corridor in early 2000 that this corridor will be a critical front in the fight against deforestation due to population, economic, and industrial growth. The Metropolitan Regions of Belem and Manaus has a population of “2,454,000, a 0.9% increase from 2024, respectively, according to 2025 data” (MACROTRENDS, 2025, March 31). More recent studies show that deforestation between Manaus and Belém is especially concerning due to the regions biodiversity hotspots and climatic buffer. This results in the forest’s resilience to logging, agriculture, infrastructure, drought and fires, potentially pushing parts of the Amazon closer to shift from rainforest to savanna.

Figure 1. Brazilian Amazon: cities populations (2010). (Veloso dos Santos, T. 2022)

The Manaus Metropolitan Region (MMR) has grown in the recent decades and has experienced land-use and land-cover changes by incorporating highways, and infrastructure, and has increased in population “from around 8.2 million in 1970 to 24 million in 2010, a growth of 193%” (IBGE, 2010). This population growth was concentrated in urban centers and became one of the largest environmental problems in the region due to rapid migration as well as a lack of planning and infrastructure (Becker, 2001)” (Santos, Yara L.F., et al). Integrated land-use planning that considers both urban development and forest conservation. The projected trends suggest that without intervention, urban expansion will continue to drive deforestation, threatening biodiversity and the ecosystem in the Amazon. The projected “scenario indicates that, if deforestation rates persist, most of the municipalities in the MMR would experience an increase of more than 100% in their deforested areas by the end of this century. Some MMR municipalities would have urban areas expand by over 500% by 2100” (Veloso dos Santos, T. 2022). This calculation simulates land-use and land cover changes using data from 2004 to 2010 and validates it with data from 2012 to 2017, allowing for a projection of future land-use and land change based on historical trends and current policies. This significant growth between Manaus and Belem highlights the pressing need for sustainable urban planning and forest conservation strategies.


DATA/INFORMATION

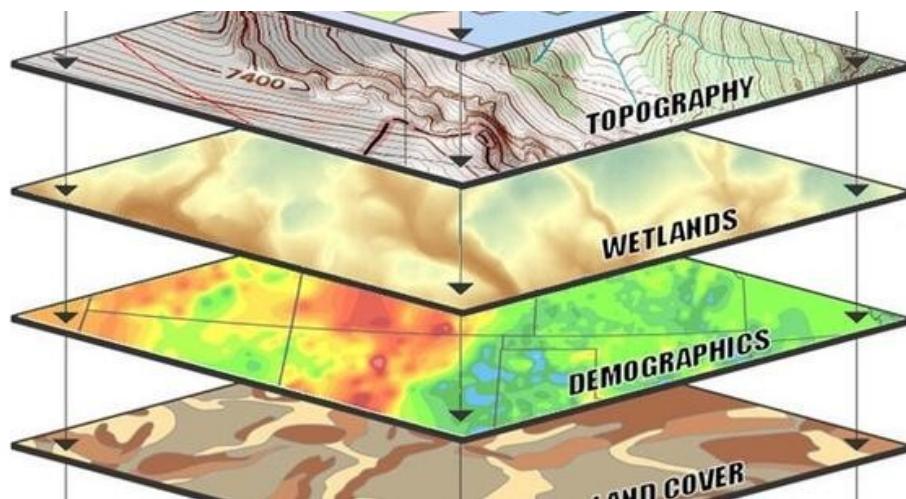
Data to monitor and manage deforestation in the Amazon can be utilized by a range of traditional and innovative techniques and methods, including traditional field survey measurements, remote sensing with LiDAR and earth observation satellites up to 10cm resolution, GIS, AI, ML, and UAV. These approaches are crucial for monitoring biodiversity, deforestation, agriculture production, and climate change effects on the rainforest ecosystem.

LiDAR/Satellite Imagery

LiDAR (Light Detection and Ranging) is one of the most powerful tools that uses laser pulses to measure distances and create highly accurate, three-dimensional images of terrain, forest canopy, and vegetation (Figure 2). LiDAR has transformed the way researchers study deforestation, biodiversity, carbon sequestration, and human impact.

Figure 2. Field plot LiDAR data map of the Peruvian Amazon. (Butler, R., 2010, September 6)

Satellite images from Earth observation satellites is a powerful method to analyze, monitor, and manage deforestation, environmental changes, forest dynamics, biodiversity, and illegal activities in the Amazon Rainforest. These images provide detailed and large-scale coverage and observation in remote and inaccessible regions (Figure 3).


Figure 3. Manaus – Belem deforestation. (Google 2025)

Geographic Information System (GIS)

GIS tools are an important role in understanding deforestation and environmental patterns, tracking changes, and supporting conservation and intervention and development planning. These tools are used to collect, store, analyze, and visualize spatial data in the Amazon Rainforest. GIS compiles diverse data sources such as satellite imagery, LiDAR, GPS survey field data, topographic maps, and climate models to manage large datasets and create layered maps displaying forest canopy cover, elevation, terrain, land use, and land change over time (Figure 4). Integrating image data and GIS allows for managing and monitoring deforestation with indigenous territory maps to assess threats to local communities.

Figure 4. GIS layers (USGS, 2025)

Artificial Intelligence (AI) and Machine Learning (ML)

AI and ML collect and process image data by extracting spectral data and transferring it into management solutions monitoring deforestation. “AI has been used for climate change to aid in the prediction and monitoring of droughts, greenhouse gases, cloud cover, and weather patterns” (Satellite Imaging Corp., 2025).

AI and GIS tools can support for monitoring and management of deforestation activities by utilizing satellite and LiDAR image data collected by satellites or aircraft. “This data is collected and processed to provide NDVI and many other vegetation indices to identify land being cleared legally or illegally. The ability of AI and GIS to analyze and visualize environments and workflows has proven to be very beneficial to those involved in the forestry industry”. (Satellite Imaging Corp., 2025).

Unmanned Aerial Vehicle (UAV)

UAVs and drones are a newly advanced tool for collecting high-resolution image data for deforestation mapping. They can provide an advanced low-cost and high-resolution alternative to traditional satellite or aircraft imagery. UAVs can collect data from small-scale or difficult-to-access areas. UAVs are equipped with high-resolution cameras that capture detailed real-time imagery and can operate below cloud cover, capture imagery on demand, and have a resolution of up to 10cm. UAVs and drones can help detect forest encroachments, such as illegal logging and illegal mining operations, and allow for real-time surveillance, rapid response, and law enforcement or advocacy.

ANALYSIS/TECHNIQUES

LiDAR/Satellite Imagery

Using LiDAR and satellite imagery offers different advantages and disadvantages for monitoring and managing deforestation in the Amazon. LiDAR, which is costly and requires expertise, offers high-resolution image data with great detail for forest structure, forest canopy count and biomass, terrain, and topography mapping, enabling tree canopy cover. Satellite imagery offers access for monitoring of large or remote areas, but may have limitations in capturing fine details and penetrating dense cloud cover (International Journal of Applied Earth Observation and Geoinformation, 2019). Satellite imagery is less expensive than LiDAR surveys, and can be acquired regularly and is publicly available and accessible by researchers, conservationists, and policymakers in real time. Satellite images vs LiDAR have less resolution or details, making it difficult to distinguish between different types of deforestation or to detect subtle changes in the forests and require expertise in imagery data analysis or remote sensing to interpret the data and identify deforestation and vegetation patterns.

Geographic Information System (GIS)

GIS tools are very useful for collecting, managing, and analyzing land cover and land change condition data from various sources such as satellites, LiDAR, and UAVs, on deforestation trends and patterns in the Amazon Rainforest. GIS plays a crucial role in processing and interpreting spatial information to monitor and manage changes in deforestation over time using, archival datasets to help

identify deforestation hot spots, patterns, rates, and trends. GIS dataset maps can be produced to provide accurate and detailed layered maps showing deforestation affected areas, forest boundaries, highways, roads, and human activity that can be shared with environmentalists, conservationists, policymakers, and the public. These dataset maps can support the planning for legal enforcement, conservation, reforestation, and sustainable solutions. GIS training and expertise rely on researchers and environmentalists with training in GIS software and interpreting spatial data, which can be costly due to the requirement of high-performance computers with excessive storage, especially for 3D or high-resolution imagery. The use of satellite imagery can experience cloud cover issues in the Amazon, which affects the quality of the image data to support project completion unless aerial, radar, or LiDAR image data is collected and integrated. GIS is an essential and crucial tool for monitoring and managing deforestation in the Amazon, but its effectiveness depends on data quality and user expertise.

Artificial Intelligence (AI) and Machine Learning (ML)

AI and ML are the latest innovative technological tools for analyzing and detecting deforestation in the Amazon Rainforest that data collect data from satellite sensors and UAVs. AI and ML improve how data is processed, interpreted, and used. AI and ML can automatically identify deforestation patterns, forest degradation, wildfires, and land-use changes from satellite imagery or UAV data in real-time which saves time and reduces manual errors in image analysis. This process can enable researchers, conservationists, and law enforcement to respond to illegal logging, mining, or encroachment. AI and ML allow for analyzing massive datasets covering the entire Amazon region. AI and ML interpretation requires expertise and training with sophisticated programming, science skills, and an expensive computer infrastructure. AI can mislead or lack in context misinterpret current or human information and provoke ethical or privacy concerns if used without consent or regulation.

ANTICIPATED RESULTS

The data integration of satellite images, LiDAR, AI, ML, and UAVs is expected to advance the monitoring and management of deforestation in the Amazon by producing high-resolution, near-real-time imagery and survey field data for large-scale and localized deforestation and forest disturbances, and encroachment. LiDAR's high-resolution quality imagery in 3D and can enable more precise and detailed identification of deforestation trends and patterns that are often missed by traditional methods such as data from satellite imagery. AI and ML algorithms integrated with satellite and UAV datasets are expected to reduce the time needed to detect, report, and respond to deforestation encroachment, allowing for quicker law enforcement, government, and community actions and intervention strategies. AI and ML data can forecast high-risk areas of future deforestation that can support conservation planning and resource mitigation. The integration of UAVs and satellite imagery for large-scale or remote areas can provide analysis for monitoring and managing deforestation satellite imagery provides broad, frequent coverage for detecting regional forest loss patterns. UAVs offer high-resolution, site-specific data that can validate and enhance satellite image data and allow for multi-scale analysis, combining the detailed insights of UAVs that are cost-effective for deforestation monitoring and management. The use of LiDAR, satellite imagery, GIS, AI, ML, and UAVs can support visual data outputs for researchers, conservationists, policymakers, and local communities, supporting sustainable

solutions for the Amazon. Advanced technologies such as satellite imagery, LiDAR, GIS, AI, ML, and UAVs are expected to revolutionize how deforestation is monitored, analyzed, and managed in the Amazon with speed, accuracy, and scalability on deforestation and for planning conservation strategies and sustainability to protect our critical ecosystems.

LIMITATIONS OF PROPOSED STUDY

Traditional and new innovative technologies with LiDAR, satellite imagery, AI, ML, and UAVs may have limited data and image resolution or collection that could hinder deforestation detection concerning illegal logging and mining activities. These technologies could lead to high costs for satellite, aircraft, or computer equipment to gather deforestation terrain information, satellite or aerial data collection, retrieving local permits to access at-risk areas, permits, and noncompliance from local government, law enforcement, political authorities, stakeholders, and private landowners. Access and connection to Indigenous and local communities could be difficult they have lived in the Amazon for centuries, but are the foundation of our understanding and reporting illegal logging, mining, or land grabbing faster than local authorities. It is important to educate communities and the people of the Amazon to live a sustainable life through eco-friendly tourism, regenerative agriculture, excessive cattle ranching, and non-timber forest products to control deforestation. Governments and environmental organizations should enforce environmental laws, educate communities and the public about land use policies, and protect areas crucial for balancing the ecosystem to produce sustainable solutions. When communities and governments work together, conservation efforts are more likely to be successful in producing positive solutions to reduce the speed of deforestation. Participatory governance, land ownership recognition, sustainable living, and transparent policy-making all contribute to long-term forest protection. These limitations can be reversed in deforestation and could involve political, economic, social, and environmental factors for Amazon deforestation. If global leaders contribute and get involved to produce sustainable solutions we can slow the rate of land clearing and save local Indigenous and local communities who are the ancestors of the Amazon.

BUDGET

The budget for intervening innovative technological tools, government permits, and compliance from land ownership can cost from hundreds of thousands to millions or billions of dollars. “According to a recent study led by Jose Maria Cordoso da Silva, a professor and biogeographer at the University of Miami College of Arts & Sciences, the Brazilian government, as well as conservation entities and governments around the world, must allocate at least \$1.7 to \$2.8 billion a year to keep the rainforest thriving” (Del Campo, B. D. E. (2022, November 28).

References

Celebrating 20 Years of Protecting the Brazilian Amazon | Stories | WWF,
www.worldwildlife.org/stories/celebrating-20-years-of-protecting-the-brazilian-amazon. Accessed 1 May 2025.

Climate Policy Initiative. (2025, May 4). *Brazilian Environmental Policies and the New European Union Regulation for Deforestation-Free Products: Opportunities and Challenges* - CPI. CPI. <https://www.climatepolicyinitiative.org/publication/brazilian-environmental-policies-and-the-new-european-union-regulation-for-deforestation-free-products-opportunities-and-challenges/>

Veloso dos Santos, T. (2022). Perspective Chapter: Belem and Manaus and the Urban Agglomeration in the Brazilian Amazon. IntechOpen. doi: 10.5772/intechopen.102481

MACROTRENDS. (2025, March 31). Belem, Brazil Metro Area population 1950-2025. <https://www.macrotrends.net/global-metrics/cities/20182/belem/population#:~:text=The%20metro%20area%20population%20of%20Belem%20in,was%202%2C385%2C000%2C%20a%201.06%%20increase%20from%202021.>

Santos, Yara L.F., et al. “Amazon Deforestation and Urban Expansion: Simulating Future Growth in the Manaus Metropolitan Region, Brazil.” *Journal of Environmental Management*, vol. 304, Feb. 2022, p. 114279, <https://doi.org/10.1016/j.jenvman.2021.114279>.

Butler, R. (2010, September 6). Peru’s rainforest highway triggers surge in deforestation, according to new 3D forest mapping. Mongabay Environmental News. <https://news.mongabay.com/2010/09/perus-rainforest-highway-triggers-surge-in-deforestation-according-to-new-3d-forest-mapping/>

Google Maps 2025

Artificial Intelligence - ai | Satellite Imaging Corp. (n.d.). (Accessed April 30, 2025) <https://www.satimagingcorp.com/applications/natural-resources/forestry/>.

GIS data layers visualization. (2016, August 24). USGS. <https://www.usgs.gov/media/images/gis-data-layers-visualization>

Almeida, D., Broadbent, E., Zambrano, A., Wilkinson, B., Ferreira, M., Chazdon, R., Meli, P., Gorgens, E., Silva, C., Stark, S., Valbuena, R., Papa, D., & Brancalion, P. (2019). Monitoring the structure of forest restoration plantations with a drone-lidar system. *International Journal of Applied Earth Observation and Geoinformation*, 79, 192–198. <https://doi.org/10.1016/j.jag.2019.03.014>

Del Campo, B. D. E. (2022, November 28). *The cost to preserve the Amazon*. <https://news.miami.edu/as/stories/2022/07/the-cost-to-preserve-the-amazon.html>